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Population Genomics of Marine Zooplankton 

Ann Bucklin, Kate DiVito, Irina Smolina, Marvin Choquet, Jennifer M. Questel,  

Galice Hoarau, and Rachel J. O’Neill 

 

19.1. Abstract 

The exceptionally large population size and cosmopolitan biogeographic distribution that 

distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of 

population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has 

slowed the application of population genomic approaches, due to lack of genomic resources for closely-

related species and diversity of genomic architecture, including highly-replicated genomes of many 

crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is 

transforming our ability to analyze population genetics and connectivity of marine zooplankton, and 

providing new understanding and different answers than earlier analyses, which typically used 

mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, 

despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic 

populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population 

connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are 

critically needed to allow further examination of micro-evolution and local adaptation, including 

identification of genes that show evidence of selection. These new tools will also enable further 

examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to 

discriminate genetic “noise” in large and patchy populations from local adaptation to environmental 

conditions and change.  

 

 

Keywords: Zooplankton, Population genomics, Transcriptomics, Evolution, Population genetics  
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19.2. Introduction 

II.A. Introduction to population genomics 

Population genomic approaches entail simultaneous sampling of numerous variable loci within a 

genome and allow inference of locus-specific effects (Baird et al. 2008). These powerful new techniques 

are transforming our understanding of the population genetics, connectivity, demographic history, and 

local adaptation of marine organisms (Crawford and Oleksiak 2016; Pogson 2016). Genotyping hundreds 

to thousands of genetic markers for multiple individuals across populations or species has enabled 

identification of selectively-neutral markers that can be used for a wide variety of analyses (Luikart et al. 

2003; Baird et al. 2008). Discrimination of statistical ‘outlier’ loci allows examination of the impacts of 

selection and evidence of local adaptation (Stapley et al. 2010). Whole-genome analysis of non-model 

organisms has enabled new insights into underlying evolutionary forces. However, significant challenges 

remain for whole-genome analysis of non-model organisms, thus necessitating and encouraging broad use 

of approaches that require little or no prior genomic data. These include reduced-representation genomic 

DNA libraries (Reitzel et al. 2013), genotyping-by-sequencing (Elshire et al. 2011), and exon-capture 

(Hodges et al. 2007; De Wit et al. 2015; Jones and Good 2016), although the latter requires prior 

knowledge of gene architecture. In broad view, population genomic approaches have enormous potential 

to yield significant new understanding of the ecological and evolutionary dynamics of zooplankton and 

other marine organisms.  

19.2.1. Introduction to marine zooplankton  

19.2.2.1. Biodiversity: The marine zooplankton assemblage includes ~6,000 described species of 

holoplanktonic metazoan organisms that complete their entire cycle in the water column (Wiebe et al. 

2010). The phylogenetic diversity of this assemblage is impressive, with 11 phyla and 27 orders 

represented (Bucklin et al. 2010b). However, these numbers most likely markedly underestimate the 

actual biodiversity – perhaps by several orders of magnitude – due to the presence of cryptic variation 

within geographically widespread species or sibling species swarms, as well as undiscovered species in 
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under-sampled or explored habitats (Bucklin et al. 2010a; Beaugrand 2017). Molecular approaches, 

including DNA barcoding and metabarcoding, are providing important new insights into this ‘hidden 

diversity’ of marine zooplankton (Lindeque et al. 2013; Bucklin et al. 2016). 

19.2.2.2. Biogeography: Global patterns of zooplankton biogeographic distributions have been 

well-characterized for the epipelagic (0 – 200 m) zone (Longhurst 2007). The many classical studies form 

a basis for ongoing examination of climate-driven range changes and regime shifts (deYoung et al. 2008). 

In contrast, the deep ocean, including the mesopelagic (200 – 1,000 m) and bathypelagic (1,000 – 4,000 

m), remains under-sampled and poorly-known (but see Wiebe et al. 2010; Laakmann et al. 2012). Many 

species exhibit cosmopolitan distributions, with ranges spanning multiple ocean basins and broad 

latitudinal ranges (Peijnenburg and Goetze 2013). However, there are many exceptions to this 

oversimplified description, likely resulting from specific habitat requirements, restricted gene flow, or 

relict populations (Chust et al. 2016). Further complicating analysis of species distributional patterns are 

rather characteristic high ratios of local-to-global species diversity; a net sample from oceanic waters may 

contain hundreds of species of copepods or ~10% of the global total (Kuriyama and Nishida 2006).  

19.2.2.3. Life history: Many zooplankton species have life histories entailing multiple stages with 

different micro-habitat preferences and requirements. Some exhibit alternation of sexual and asexual 

generations. Most are relatively short-lived organisms, with generation spans from several months to a 

couple of years. As a group, marine zooplankton are useful indicators of impacts of environmental 

variability or climate change, since they are rapid-responders in terms of species distribution and 

abundance. The exceptional diversity of marine zooplankton – in terms of phylogenetic biodiversity, 

pelagic biogeography, and life history variation – provided a unique opportunity to examine ecological 

and evolutionary genomic responses. This review will summarize new knowledge resulting from 

population genomic examination of the genetic diversity and structure, phylogeography and connectivity, 

demographic history, and local adaptation of marine metazoan holozooplankton.  
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19.2.3. Genomic resources for marine zooplankton 

19.2.3.1. Published genomic resources: It can be argued that there are no universally-accepted 

model species among the marine zooplankton; in many cases, there are no closely-related model 

organisms to which extrapolations or comparisons can be made (Ellegren 2014). However, the number of 

marine zooplankton species targeted for genome-scale studies is growing, including species ranging 

phylogenetically from the Cnidaria to the Urochordata and including ecologically-important or keystone 

species for some pelagic ecosystems, such as the Southern Ocean salp, Salpa thompsoni (Jue et al. 2016) 

(Table 1).  

For the most part, marine zooplankton species targeted for reference sequencing and assembly 

have been identified by their impact to ongoing comparative genomic studies or as part of larger genome 

consortia. An example of this latter group is the genome sequence for the copepod Eurytemora affinis, a 

species targeted for sequencing as part of the i5K Pilot Project aimed at sequencing 28 arthropod genomes 

(i5K Consortium 2013; Eyun et al. 2017). Currently, assembled genomes are available for species 

representing only a snapshot of some of the major lineages of eukaryotes and a small sampling of the 

species diversity of the pelagic realm (Table 1). A significant factor in the identification of a target 

species for a genome assembly effort is the estimated genome size. Notably, all the reference genomes 

available are from organisms whose genome size estimates are significantly smaller than 1GB, 

presumably since the depth of coverage required is low enough to represent a feasible investment of 

resources in terms of fiscal and computational effort. While reference quality assemblies are ideal (e.g., 

Oikopleura dioica, Denoeud et al. 2010), lower coverage assemblies can still provide a high enough N50-

value (i.e., the weighted median statistic such that 50% of the entire assembly is contained in contigs or 

scaffolds equal to or larger than this value) to afford extensive gene predictions (e.g., Jue et al. 2016).  

Recently, mining genome databases such as NCBI and the SRA (Short Read Archive) for partial 

genome sequences has afforded broader comparisons among species lacking a fully assembled genome. 

For example, a newly derived reference for the common estuarine copepod E. affinis was compared to 
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short read genomic sequence data from two other copepods, the freshwater cyclopoid copepod, 

Mesocyclops edax (SRX246444 and SRX246445; Sun et al. 2014) and the North Atlantic copepod, 

Calanus finmarchicus) (SRX456026; Smolina et al. 2014), revealing species-specific adaptations of the 

chemosensory related gene families to environments (Eyun et al. 2017).  

19.2.3.2. Genome size in the zooplankton: The average estimated genome sizes (haploid nuclear 

DNA contents) of holoplankton species are in general far above 1 GB (Fig. 1) and varies more than 900-

fold, from 0.07 GB in Oikopleura dioica (Appendicularia) to 63.2 GB in Ampelisca macrocephala 

(Amphipoda). Variation of genome sizes in marine zooplankton is especially large within the Copepoda 

with > 370-fold variation among species (Leinaas et al. 2016; Madoui et al. 2017) followed by Ostracoda 

and Malacostraca with around 80-fold and 70-fold variation of genome size among species, respectively 

(Gregory 2017; Jeffery et al. 2017). To date, genome size has been investigated for 115 species of 

zooplankton, with poor representation of important phyla, including Chaetognatha, Cnidaria, Ctenophora, 

Mollusca and Chordata. 

Several trends or patterns are emerging from genomic analyses of crustaceans, although only a 

few species have been studied to date. First, a positive relationship between genome size (C-value) and 

body size has been observed in copepods (McLaren et al. 1988; Wyngaard and Rasch 2000), amphipods 

(Hessen and Persson 2009), and ostracods (Jeffery et al. 2017). However, there is considerable variability 

in genome size both among species of similar body size (Gregory et al. 2000; Leinaas et al. 2016) and 

within species due to environmental conditions (McLaren et al. 1988; Escribano et al. 1992; Leinaas et al. 

2016). Second, genome size has been associated with specific habitats and environmental conditions. 

Marine crustaceans are likely to have larger genomes than freshwater and terrestrial ones (Jeffery 2015; 

Alfsnes et al. 2017); within the marine realm, polar species tend to have larger genomes compared to 

temperate species (Hessen and Persson 2009; Jeffery 2015; Leinaas et al. 2016). Jeffery (Jeffery 2015) 

hypothesizes that such large genomes may result from the expansion of transposable elements and other 

repetitive elements, due to relaxed selection for rapid development or reduced constraints on body size in 
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predictable and stable marine polar environments, compared to more fluctuating environments.  

Causes and mechanisms of genome size variability and particularly expansion of genome sizes 

are still not known. Among eukaryotes, genome size is positively correlated with gene number, average 

intron size, and number of introns per genome (Elliott and Gregory 2015). The main drivers of genome 

size expansion are suggested to be whole-genome duplication (polyploidization) or partial duplication 

events and proliferation of noncoding elements (Dufresne and Jeffery 2011). 

Information on genome size, genome sequence, and karyotype is sparse in marine zooplankton, 

limiting our understanding of genome evolution. Nevertheless, evidence from insects and crustaceans 

suggest that accumulation of transposable and repetitive elements may be the primary contributor to their 

large genome sizes (Alfsnes et al. 2017), while polyploidization is probably not the most common driver 

of genome evolution in zooplankton (Gregory and Hebert 1999). For example, species of the copepod 

genera Calanus and Pseudocalanus exhibit quantum shifts in genome size (C-values) within each genus, 

but share similar chromosome complements (McLaren et al. 1989). 

Partial duplication or amplification of genomic regions may be common in large genomes of 

zooplankton, particularly for ribosomal rDNA and protein-coding genes. Among eukaryotes, rDNA copy 

number correlates positively with genome size (Prokopowich et al. 2003). For species of Calanus, 18S 

rDNA gene copy number has been found to approximately double between C. finmarchicus (15,300 

copies; 2C = 12.95 pg) and C. glacialis (33,500 copies; 2C = 24.20 pg; Wyngaard et al. 1995). 

Transcriptomic analysis has indicated the presence of multi-copy gene families originating from multiple 

duplications of an ancestral gene in copepods (Lenz et al. 2014; Yang et al. 2014), euphausiids (Toullec et 

al. 2013; Sales et al. 2017), and pteropods (Maas et al. 2015; Thabet et al. 2017).  

19.2.3.3. Mitochondrial genomes: Fragments of mitochondrial DNA were among the first 

molecular tools used to tackle questions related to zooplankton species identification, phylogenetics, 

phylogeography, and population genetics. For example the cytochrome oxidase sub-unit I is 

preferentially used as a barcode for metazoan (Schindel and Miller 2005), and has been used frequently 
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for marine zooplankton (Bucklin et al. 2007, 2010a, 2011; Blanco-Bercial et al. 2014).  

Recent technological advances are allowing routine sequencing of whole mitochondrial genomes 

(mitogenomes), with marked increase in the power of phylogenetic and phylogeographic analyses 

compared to use of short mtDNA sequences. Applications such as shotgun sequencing on genomic DNA 

using high throughput sequencing technologies afford opportunities to capture other genomes that may be 

resident within a sample, such as mitochondrial DNA. Given the smaller target genome size (12-20KB), 

mitogenomes are easier to subsample from larger datasets or to assemble using a PCR-build approach 

(Maricic et al. 2010; Hahn et al. 2013; Kollias et al. 2015). 

Mitogenomics is a promising field of research that will contribute new insights into the 

phylogenetic history and evolution of planktonic species. For example, sequencing the mitogenome of the 

chaetognath, Spadella cephaloptera, allowed resolution of the phylogenetic position of the chaetognaths 

within Protostome lineages (Papillon et al. 2004). Only a few mitogenomes have been published thus far 

– especially when the species diversity of zooplankton is considered – and within those, unexpected 

features appear to be more common than previously thought. Mitogenomes are publicly available for a 

number of ecologically-important species representing diverse phylogenetic lineages of marine 

zooplankton (Table 2), and additional complete mitochondrial assemblies may be found within 

incompletely-explored genomic data. Nonetheless, the sequencing and assembly of complete 

mitogenomes of marine zooplankton species has progressed at a much slower pace than other for 

vertebrate groups (Genome 10K Community of Scientists 2009; GIGA Community of Scientists 2014). 

In animals, the mitogenome is relatively well conserved, with 36 or 37 genes, including two for 

rRNAs, 22 for tRNAs and 12 or 13 for protein-coding genes. The mitogenomes available for marine 

zooplankton species indicate a general trend of high intra- and interspecific variability. Rearrangement of 

gene order is exceptionally common and has been documented in amphipods (Ki et al. 2010) and 

ctenophores (Kohn et al. 2012), with some of the genes relocated to the nuclear genome (Pett et al. 2011). 

Copepods also show marked variability among congeneric species and among genera (Fig. 2; Jung et al. 
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2006; Minxiao et al. 2011). The most exceptional cases of mitochondrial variability documented to date 

are in the chaetognaths, Spadella cephaloptera and Sagitta elegans, for which natural populations exhibit 

unprecedented levels of intra-specific divergence (Marlétaz et al. 2017). 

The variability observed in the mitogenomes of different species/lineages is also apparent in the 

genes content and size of these mitogenome (Table 2). The smallest mitogenome reported is the 

ctenophore, Mnemiopsis leidyi, with only 10 kb, which is missing 25 genes (Pett et al. 2011). Within the 

chaetognaths, mitogenomes are also very reduced compared to other metazoans, missing several common 

genes (Helfenbein et al. 2004; Papillon et al. 2004). On the other hand, the longest mitogenomes 

documented belong to the Copepods, up to 20 kb (Minxiao et al. 2011). Several mitogenomes were found 

to contain multiple copies of some sequences (Ogoh and Ohmiya 2004; Burton et al. 2007), or short 

tandem repeats, similar to microsatellites (Shen et al. 2011).  

19.2.3.4. Transcriptomic resources: For some species, especially those with large, duplicated 

and/or evolutionarily-divergent genomes, analysis of transcriptomes has proven more feasible, accurate 

and cost-effective (De Wit et al. 2016). Transcriptomic data have the further advantage of allowing 

identification and annotation of target genes used in the examination of genomic micro-evolution and 

local adaptation (Havird and Santos 2016). Transcriptomic data, including partial reference 

transcriptomes are available for a number of marine zooplankton species (Table 3). 

19.3. Applications of population genomics for marine zooplankton  

19.3.1. Population genetic diversity and structure 

Although many zooplankton species exhibit broad geographic distributions and appear to have 

high dispersal potential, both biological and physical environmental processes may limit gene flow. 

Previous studies have revealed significant genetic differentiation of geographic populations of marine 

organisms over a range of spatial scales (Hellberg 2009; Weersing and Toonen 2009). Two general 

principles may be gleaned from many studies of zooplankton population genetics: first, zooplankton are 

quite variable in many different molecular characters; second, this variability is resolved into genetically-
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divergent, geographically-distinct populations for only some species and at some temporal and spatial 

scales (Peijnenburg and Goetze 2013).  

Ocean processes that are thought to be significant for population genetic structuring of 

zooplankton are currents, persistent eddies, ocean gyres and other physical ocean structures at the 

mesoscale (10s to 100s km) to large scale (100s to 1000s km). The physical structure of the ocean can 

alter the timing of reproduction and mortality events, providing biological barriers to gene flow. 

Geological features – continents, islands and other landforms, continental shelves, seamounts, and ocean 

ridges – may form natural barriers to dispersal. In contrast, cosmopolitan species, which range from 40oN 

to 40oS and are found in every ocean basin, may have few barriers to dispersal throughout their range. 

These species may exhibit large-scale spatial population genetic structure due to isolation by distance 

(i.e., reproductive isolation resulting when the geographic range of the species far exceeds the dispersal 

potential of an individual).  

The temporal stability of population genetic diversity and structure is an important consideration 

and useful metric. Since zooplankton are subject to transport in ocean currents, temporal stability of 

population genetic characters may indicate retention of local populations or local recruitment. An 

unfortunate aspect of many studies of zooplankton populations is the collection of samples from different 

regions during different years, thus confounding spatial and temporal variation. In relatively few studies, 

spatial and temporal contributions to population genetic structure have been analyzed separately using 

appropriately-collected samples (Goetze et al. 2015; Iacchei et al. 2017). 

Patterns of genetic diversity and structure have been examined over a wide range of spatial scales 

for species representing many lineages of the zooplankton assemblage. Some species have been shown to 

be panmictic, such as Pelagia noctiluca (Stopar et al. 2010) and Euphausia superba (Deagle et al. 2015). 

Many species exhibit geographic variation reflecting geographic barriers and/or circulation patterns: e.g., 

Tigriopus californicus (Renaut and Dion-Côté 2016), Eukrohnia hamata (Kulagin et al. 2014), and 

Caecosagitta macrocephala (Miyamoto et al. 2010), to name a few. A number of species show large-
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scale patterns of genetic diversity associated with latitudinal gradients (e.g., Francisco et al. 2014) and 

among ocean basins, including Eukrohnia hamata (Miyamoto et al. 2012), Pleuromama abdominalis 

(Hirai and Tsuda 2015), and Oithona similis (Cornils et al. 2017). 

The occurrence and significance of small-scale genetic patchiness in marine zooplankton 

populations remain a subject of study and disagreement. Such variability has been considered to reflect 

the genetic “noise” of large and under-sampled populations of copepods (e.g., Goetze et al. 2015). Small-

scale heterogeneity was considered to reflect advective transport from diverse recruitment sources in the 

Antarctic krill, Euphausia superba (Batta-Lona et al. 2011). 

Due to nearly-universal application in population genetic studies, hierarchical analysis of variance 

using Wright’s F-statistics related measures (Excoffier et al. 1992) provides useful benchmarks for 

comparisons among species, regions, and environments. However, F-statistics have assumptions that are 

surely not met for zooplankton (Hellberg 2009), including genetic equilibrium conditions, symmetrical 

migration, and stable populations. The usefulness of F-statistics is further limited by the very large 

population sizes of many zooplankton, which result in relatively larger confidence intervals for very small 

F values (Waples 1998), and thus a lack of statistical significance for high gene flow species (see Waples 

et al. 2008). At least partly for this reason, population genetic studies of marine species have also 

employed various measures of oceanographic distance (Hansen and Hemmer-Hansen 2007; McGovern et 

al. 2010; Alberto et al. 2011; Schunter et al. 2011) and approaches such as seascape genetics (Galindo et 

al. 2010). 

Until recently, population genetic studies have most frequently been conducted with markers 

representing a very small fraction of the genome, such as individual mitochondrial or nuclear genes and 

microsatellites (see reviews by Avise 2009; Hellberg 2009; Peijnenburg and Goetze 2013). Rates of 

divergence and amounts of variation differ among these markers, but many studies have documented 

significant genetic differentiation of zooplankton populations at large, ocean basin scales using 

mitochondrial DNA (e.g., Goetze 2005; Goetze and Ohman 2010; Miyamoto et al. 2010; Blanco-Bercial 
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et al. 2011a; Miller et al. 2012; Norton and Goetze 2013; Dawson et al. 2015) and microsatellite markers 

(Bolte et al. 2013; Andrews et al. 2014). A number of studies have used mitochondrial DNA markers to 

resolve population structure of zooplankton populations associated with physical barriers to gene flow, 

including ocean circulation, for copepods (Aarbakke et al. 2011; Blanco-Bercial et al. 2011b, 2014) and 

euphausiids (Bucklin et al. 1997; Zane et al. 1998, 2000; Zane and Patarnello 2000; Papetti et al. 2005; 

Patarnello et al. 2010).  

Both mitochondrial and microsatellite markers continue to be widely used for population genetic 

analysis of zooplankton, allowing useful comparisons among diverse species and ocean environments. 

Studies using single markers have limitations, not least that results may differ among studies using 

different markers (Avise et al. 2016). In addition to their limited analytical power, studies using multiple 

markers can yield discordant conclusions. In particular, the haploid nature and uniparental inheritance of 

mitochondrial markers, and consequent smaller effective population size, may generate differences from 

results using nuclear markers (Toews and Brelsford 2012).  

Population genomic approaches can also be used for phylogeographic analysis (i.e., the 

description of the geographical distributions of the genetic lineages within a population or species; Avise 

2009; Avise et al. 2016). Such analysis allows for the characterization of dispersal and quantitative 

estimation of the rate and direction of exchange among populations. Recent reviews of larval dispersal 

and population connectivity (Cowen and Sponaugle 2009) and gene flow (Hellberg 2009) in the ocean 

have provided comprehensive assessment and analyses for marine organisms. Quantitative estimates of 

population persistence and directional (asymmetric) migration can also entail approaches that are less 

sensitive to lack of population stability and non-equilibrium conditions, typical of marine organisms 

(Knowles 2009). Analysis of patterns and pathways of gene flow has revealed that patterns of population 

connectivity of marine organisms do not always mimic major ocean currents (Kool et al. 2013; Riginos et 

al. 2016), even for zooplankton (Blanco-Bercial and Bucklin 2016; Questel et al. 2016).  

Phylogeographic analysis can also provide a window into the evolutionary history of a population 
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or species. Results can be interpreted to estimate and understand the age of the lineage in terms of time to 

coalescence (i.e., the common ancestral gene from which all current copies of the gene are descended), as 

well as imprints of demographic history on populations and species (Knowles 2009). Among marine 

zooplankton, mitochondrial markers have been used most regularly to infer demographic history (e.g., 

Peijnenburg et al. 2005; Aarbakke et al. 2014; Cornils et al. 2017), including marine invasions (Cristescu 

2015; Lee 2016; Sherman et al. 2016), population expansions and contractions (Edmands 2001), 

geographic isolation giving rise to speciation events (Lee 2000; Peijnenburg et al. 2004; Miyamoto et al. 

2010), and divergence of genetic lineages following major global climate events (Papadopoulos et al. 

2005; Blanco-Bercial et al. 2011b; Milligan et al. 2011).  

19.3.2. From population genetics to population genomics 

Recent advances in High-Throughput Sequencing (HTS) have created exceptional new 

opportunities for analysis of population genetic diversity and structure of natural populations. Tens of 

thousands of genomic Single Nucleotide Polymorphisms (SNPs) can be detected and screened for use as 

genetic makers of population genetic diversity and structure (Helyar et al. 2011; Reitzel et al. 2013). Such 

population genomic approaches are being widely used among marine organisms (Bierne et al. 2016), 

including fishes (Hemmer-Hansen et al. 2014). In addition, HTS is yielding both deep coverage and 

nucleotide-level resolution in simultaneous or multiplexed analysis of numerous genes (e.g., Bybee et al. 

2011). Such population genomic approaches are yielding a new view of population structure and 

connectivity of marine species, based on statistical discrimination of neutral, selected, and hitchhiker loci 

(Gagnaire and Gaggiotti 2016). 

Over the last three decades, genetic research has showed continuous development and a high 

turnover of molecular markers, from partial DNA sequencing, restriction fragment length polymorphism 

(RFLP), random amplified polymorphism detection (RAPD) and amplified fragment length 

polymorphism (AFLP) to microsatellites, insertion-deletion polymorphism (InDel), and single nucleotide 

polymorphism (SNP; Schlötterer et al. 2014). Historically, development of markers was difficult and 
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expensive for non-model organisms. However, the advent of HTS has revolutionized this by allowing the 

genome-wide markers in any organism and for low cost (Ekblom and Galindo 2011). Although 

simultaneous discovery and genotyping of genome-wide variation has become feasible for tens of 

individuals with small genome sizes (< 1GB), the individual sequencing of hundreds of individuals with 

large genomes remains prohibitively expensive (Narum et al. 2013). In addition, sequencing of the 

complete genome for all individuals is often unnecessary and inflates the bioinformatics demands (Narum 

et al. 2013). Therefore, for many studies including population genomics, it is more efficient to sequence a 

limited number of targeted loci, thus increasing their coverage and chance to detect true polymorphism 

(Ekblom and Galindo 2011).  

A revolutionizing solution to address this situation was the development of genotyping-by-

sequencing (GBS) approaches that allow sequencing with high throughput technology of a targeted 

fraction of the genome via various reduced-representation protocols (see review by Crawford and 

Oleksiak 2016). These approaches result in discovery and simultaneous genotyping of thousands of SNPs 

even in species with large genomes and little or no previous genomic information. GBS relies on various 

reduced-representation protocols to target a genome fraction, but four protocols are currently the most 

popular: RNA-seq, Ampli-seq, Cap-seq (i.e., capture enrichment), and RAD-seq (Davey and Blaxter 

2010; Reitzel et al. 2013). Published reduced representation genomic resources are currently available for 

several species of marine zooplankton, such as the copepods, Tigriopus californicus (Foley et al. 2011), 

Calanus finmarchicus (Smolina 2015), and Centropages typicus (Blanco-Bercial and Bucklin 2016); and 

the euphausiid, Euphausia superba (Deagle et al. 2015). The number of studies using reduced 

representation for population genomics in marine zooplankton may be expected to expand in the near 

future. 

The power of genomic SNPs for resolution of regional- to large-scale population structure of 

zooplankton has been demonstrated for several key species (see Case Studies, below). A large-scale 

population genetic analysis using genomic SNPs demonstrated that RAD-seq methods performed poorly 
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in the copepod, Calanus finmarchicus, which has a large and complex genome (Smolina 2015). 

Subsequent studies of this species using targeted resequencing (e.g., Cap-seq) showed promise for 

accurate SNP identification and detection of genetic structuring for this species (Choquet et al., unpubl. 

data). Similarly, a study of the copepod, Centropages typicus, by Blanco‐Bercial and Bucklin (2016) 

using 1,000s of genomic SNPs obtained by RAD-seq revealed evidence of population structure, in 

contrast to an earlier study based on mitochondrial gene sequences (Castellani et al. 2012).  

Genomic SNPs that show evidence of selection can provide markers of micro-evolution and local 

adaptation, including identification of the key genes involved in these phenomena. The use of many 

thousands of genomic markers will also enable further examination of the significance of small-scale 

genetic heterogeneity of marine zooplankton, including distinguishing genetic “noise” in large and patchy 

populations from local adaptation to environmental conditions. Large-scale SNP genotyping studies 

remain very scarce in zooplankton species, but as more studies based on these approaches are published, 

it will be important to resolve differing conclusions based on the various technical approaches and genetic 

markers employed.  

19.3.3. Genomic basis of adaptation 

Population genomic approaches have provided powerful new tools for detection of impacts of 

selection and evidence of local adaptation (Stapley et al. 2010). Patterns of variation of genomic markers 

can be statistically evaluated for non-neutrality and correlation with population dynamic, environmental, 

and evolutionary conditions and drivers (Gagnaire et al. 2015). Non-neutral markers showing evidence of 

selection can be used to reveal adaptation of populations to local conditions across a species range 

(Whitehead 2012), although other evolutionary drivers, including introgression and hitchhiking, can also 

cause such departures from neutrality for genomic traits (Bierne et al. 2013). Nielsen et al. (2009) 

concluded that few published studies have convincingly documented that non-neutral traits reflect local 

adaptation, citing reviews by Hedrick (2006) and Levasseur et al. (2007). Recent advances in statistical 

analysis of genomic markers are enabling more sensitive and accurate detection of local adaptations 
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(Gayral et al. 2013; Savolainen et al. 2013; De Wit et al. 2015), although these are much more powerful 

for species with well-characterized genomes, which allows exome capture and sequencing (Jones and 

Good 2016).  

Patterns of differential gene expression can also provide useful insights into local adaptive 

responses of marine organisms to environmental conditions. There are a number of such studies of marine 

zooplankton, including target-gene and whole-transcriptome analyses of differential gene expression 

patterns associated with stress responses and environmental variability (Lauritano et al. 2012; Schoville et 

al. 2012; De Pittà et al. 2013; Smolina et al. 2015, 2016; Roncalli et al. 2016; Batta-Lona et al. 2017). The 

genetic and genomic bases of such gene expression differences have received considerable attention (see 

review by Romero et al. 2014). 

19.3.4. Metagenetics and metabarcoding 

The exceptional challenge of species identification in zooplankton assemblages, resulting from 

both phylogenetic diversity and sibling species swarms, has encouraged the development of genetic 

approaches for both stand-alone and integrative use with morphological taxonomic methods (Bucklin et 

al. 2016). Metagenetic and metabarcoding approaches analyze DNA recovered from environmental 

samples and can reflect the biodiversity of entire pelagic communities (de Vargas et al. 2015), with the 

advantage of detecting ‘hidden diversity’ of marine zooplankton (Lindeque et al. 2013). These studies use 

‘universal’ PCR primers to amplify one or more gene regions for high throughput sequencing yielding 

tens of millions of sequences, which are subsequently resolved into operational taxonomic units (OTUs) 

that can either be matched to reference databases for identification of taxa or used for various statistical 

measures of biodiversity (Leray and Knowlton 2016). Metabarcoding studies of marine zooplankton have 

ranged from analysis of the global ocean (Bik et al. 2012; de Vargas et al. 2015) to studies focused on 

particular habitats and ecosystems, such as estuaries (Abad et al. 2016), the Red Sea (Pearman and 

Irigoien 2015), among others. Challenges remain for quantitative analysis of taxa using metabarcoding, 

although recent studies have shown some correlation between OTU frequency and taxon biomass (Hirai 
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et al. 2015; Sun et al. 2015). 

The continuing development of sequencing technologies may soon allow a full metagenomics 

approach, where DNA extracted from environmental samples is sequenced and whole genomes are 

reconstructed from the data. These data will be invaluable resources for diverse population genomic 

approaches, including analysis of population genetic diversity and structure, detection of loci under 

selection, and genomic bases of adaptations of zooplankton species to environmental variation. Currently, 

both technical and bioinformatics challenges limit use of metagenomics to species with small genomes, 

such as the copepod, Oithona nana (Madoui et al. 2017). 

19.4. Case studies of marine zooplankton  

Population genomic approaches, entailing simultaneous sampling of numerous variable loci 

within a genome and the inference of locus-specific effects (Black et al. 2001; Luikart et al. 2003), are 

only very recently being used for analysis of marine zooplankton. Comparison between results from 

population genetic studies using single-markers (usually mitochondrial or microsatellite DNA) and HTS 

genomic markers are particularly useful to evaluate the power and precision of population genomic 

approaches for analysis of genetic structure, connectivity, demographic history, and local adaptation.  

Several of the marine zooplankton species analyzed using population genomic approaches belong 

to the crustacean Subclass Copepoda, which comprises more species than any other zooplankton group, 

including many that are ecologically important, numerically predominant, and geographically widespread. 

Genomic analysis of copepods has been a focus of research, although progress has been hampered by the 

exceptionally large genome sizes of many species (Bron et al. 2011; Wyngaard et al. 2011; Jeffrey 2015). 

19.4.1. Calanus finmarchicus (Copepoda): The planktonic copepod Calanus finmarchicus (Fig. 

3) is thought to be the most abundant metazoan in the ocean; the species is ubiquitous in coastal and open 

ocean cold-temperate regions of the North Atlantic Ocean (Planque et al. 1997); within this area, the 

species may contribute >70% of total copepod biomass (Head et al. 2003) and occupies a pivotal position 

in ocean food webs (Falk-Petersen et al. 2007). Population genetic studies using mitochondrial DNA 
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(e.g., Bucklin et al. 1996) and microsatellites (Provan et al. 2009) have shown high levels of gene flow 

and little or no significant population genetic structure at any spatial scale. Studies using SNPs in targeted 

gene regions suggested genetic differentiation among samples from different water masses and ocean 

basins (Bucklin and Kaartvedt 2000; Unal and Bucklin 2010 Fig. 4). Population genomic analyses of C. 

finmarchicus have been impeded by the large size of its genome (C-value = 6.48 pg; McLaren et al. 

1988), typical of crustaceans. Smolina (2015) used a genotyping-by-sequencing approach (ddRADseq; 

Peterson et al. 2012) to characterize genomic SNPs in pooled samples of C. finmarchicus collected across 

the North Atlantic Ocean. Significant population differentiation was observed among locations, although 

the allelic nature of the SNP variants in the pooled samples could not be confirmed due to the highly-

replicated genome (Smolina 2015). An ongoing study by this group is analyzing genomic SNPs in 

targeted gene regions to allow confirmation of allelic variation despite genome size (Choquet et al. 

2017a). A partial reference transcriptome for the species (Lenz et al. 2014) is allowing evaluation of 

evidence of local adaptation based on transcriptomic and target gene analysis (e.g., Roncalli et al. 2016). 

19.4.2. Centropages typicus (Copepoda): Blanco-Bercial and Bucklin (2016) used genomic SNPs 

detected by 2b-RADseq analysis (Wang et al. 2012) to examine population genetic structure of the 

copepod Centropages typicus (Fig. 5) in the North Atlantic Ocean. Thousands of genomic SNP markers 

were identified; loci showing evidence of positive selection were removed from analysis (Foll and 

Gaggiotti 2008). Statistical analysis of molecular variance (Excoffier and Lischer 2010) revealed 

significant differences between continental shelf populations of the NE and NW Atlantic populations, in 

contrast with an earlier study by Castellani et al. (2012), which showed no structuring using a 

mitochondrial COI gene region, but some differentiation of NE and NW Atlantic populations based on a 

nuclear rRNA internal transcribed spacer (ITS) region. Genotyping-by-sequencing (RADtag sequences) 

of C. typicus yielded 675 loci used by Blanco-Bercial and Bucklin (2016) to test hypotheses of dispersal 

and directional migration (Beerli 2012). Among five different gene flow models (Fig. 6), the full 

migration model showed the highest support. These results demonstrate the power of population genomic 
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approaches to resolve patterns and pathways of dispersal of a high gene flow species in a dynamic and 

complex current system. Such analyses can also be used to examine the genomic basis of observed local 

adaptation of this species to environmental variability among regions or along a latitudinal gradient 

(Carlotti et al. 2007).  

19.4.3. Tigriopus californicus (Copepoda): The tidepool copepod, Tigriopus californicus, shows 

exceptional levels of small-scale population genetic heterogeneity associated with the habitat structure of 

the rocky shoreline, based on studies using mitochondrial markers (Rawson et al. 2000; Burton et al. 

2007). The species may be considered to be a model species for studies of evolutionary divergence and 

local adaptation (Raisuddin et al. 2007). The rapid rate of evolutionary divergence of mitochondrial genes 

is thought to contribute to the potential for local adaptation, but may also cause low hybrid fitness by 

disrupting gene complexes (Burton et al. 2013). The mitochondrial genome has been sequenced (Barreto 

et al. 2011; Pereira et al. 2016). A genomic SNP linkage map (Foley et al. 2011) and a partial draft 

genome (https://i5k.nal.usda.gov/Tigriopus_californicus) serve as useful resources for characterizing 

population genetic diversity and structure. More recently, the capacity of this species to adapt to local 

condition and stressors has been explored using population genomic and transcriptomic approaches (Lima 

and Willett 2017; Pereira et al. 2017). 

19.4.4. Acartia tonsa (Copepoda): The rapid cladogenesis – and perhaps cryptic speciation – of 

the estuarine copepod, Acartia tonsa, has been extensively studied along the Atlantic coastline of the 

USA using mtDNA marker genes (Caudill and Bucklin 2004; Chen and Hare 2008, 2011). The species 

has been intensively studied in laboratory culture, partly as food for aquacultured fish (Jepsen et al. 2017) 

and partly as a model organism for studies of the genetic basis of local adaptation and micro-evolution 

(Drillet et al. 2008). Responses to environmental stressors have been examined using genomic and 

transcriptomic approaches (Nilsson et al. 2014; Petkeviciute et al. 2015; Rahlff et al. 2017).  

19.4.5. Euphausia superba (Euphausiacea): The Antarctic krill, Euphausia superba (Fig. 7), is a 

keystone species of the Southern Ocean pelagic ecosystem, whose high abundance, markedly patchy 

https://i5k.nal.usda.gov/Tigriopus_californicus
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distribution, and swarming behavior have long been a subject of research (Siegel and Watkins 2016). The 

population genetic consequences of this exceptional life history have been studied over many decades 

using varied markers, including allozymes, mitochondrial DNA, and microsatellites. Many studies have 

revealed similar patterns of genetic diversity, whereby variation within locations far outweighs that 

between locations, with consistent evidence of lack of large-scale population differentiation (see review 

by Jarman and Deagle 2016). Two studies using mitochondrial markers found evidence of significant 

small-scale patchiness: Batta-Lona et al. (2011) hypothesized that genetic differences among samples 

resulted from advective transport from distinct recruitment centers in the Western Antarctic Peninsula 

region. Zane et al. (1998) found genetic differentiation between samples collected in the Weddell Sea and 

South Georgia. Although the statistical significance of these findings has been questioned (see Bortolotto 

et al. 2011), small-scale patchiness – or genetic “noise” – may be a consequence of the life history of this 

unique species and/or evidence of local adaptation. Evidence of micro-evolution and local adaptation by 

Antarctic krill has been shown in genetic and functional analysis of target genes, including thioredoxin 

(Li et al. 2017), clock genes (Jones and Good 2016), heat shock proteins (Papot et al. 2016), and opsins 

(Biscontin et al. 2016), among others. Population genomic analysis of Antarctic krill was introduced by 

Deagle et al. (2015), who examined circum-Antarctic genetic diversity and structure using both RADseq 

and mitochondrial (ND1 and COI) markers. The large and highly-replicated genome of E. superba (47.7 

GB, Jeffery 2012) prevented discrimination of allelic variation versus that between copies at separate loci 

(see above), which was addressed by analysis of sequence counts at variable nucleotide sites, rather than 

the derived genotypes. This study confirmed earlier findings of the large-scale panmixia of Antarctic krill 

populations (Deagle et al. 2015).  

19.4.6. Meganyctiphanes norvegica (Euphausiacea): The northern krill Meganyctiphanes 

norvegica (Fig. 8) is abundant throughout the North Atlantic and western Mediterranean Sea. The species 

exhibits clear genetic differentiation among geographic populations based on various mtDNA markers 

(see review by Patarnello et al. 2010). Consistent evidence of local adaptation of the species, including 
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enzyme activities (Saborowski and Buchholz 2002), is now being analyzed using differential gene 

expression made possible by a reference transcriptome (Maas and Blanco-Bercial 2016).  

19.4.7. Pleurobrachia bachei (Ctenophora): A draft genome of the ctenophore Pleurobrachia 

bachei (Fig. 9) revealed the possible preservation of ‘ancient molecular toolkits’ (Moroz et al. 2014), 

which are lost in other lineages. The exceptional nature of the genomic architecture of this species can 

provide new understanding of the genomic basis of their evolutionary success and potential for 

adaptation. Integrative and comparative analysis of genomic and transcriptomic data of this and another 

ctenophore species Mnemiopsis leidyi demonstrated the phylogenetic position of the phylum as the first 

metazoan lineage (Ryan et al. 2013; Moroz et al. 2014).  

19.4.8. Spadella cephaloptera (Chaetognatha): Arrow worms are predatory zooplankton that 

occupy key positions in pelagic food webs. The phylum comprises many species with cosmopolitan-but-

disjunct biogeographical distributions, which has allowed interesting comparisons among species. 

Population genetic diversity and structure of several chaetognath species have been explored using both 

mtDNA and microsatellites (Peijnenburg et al. 2004, 2006; Faure and Casanova 2006; Miyamoto et al. 

2010; Kulagin et al. 2014). Large-scale studies have also allowed examination of the demographic 

histories of the species (Peijnenburg et al. 2005). Analysis of the mitochondrial genome of Spadella 

cephaloptera (Fig. 10) yielded evidence of exceptional intraspecific variation (Marlétaz et al. 2017), and 

resolved the phylogenetic position of the Chaetognatha within Protostome lineages (Papillon et al. 2004). 

19.4.9. Salpa thompsoni (Tunicata, Thaliacea): The Southern Ocean salp Salpa thompsoni (Fig. 

11) is a pivotal species in the pelagic ecosystem of Antarctic regions, including the Western Antarctic 

Peninsula, one of the fastest warming regions of the world oceans. A reference transcriptome for S. 

thompsoni is available, although only 18% of the 216,931 sequences were associated with predicted, 

hypothetical, or known proteins (Batta-Lona et al. 2017). Another recent study (Jue et al. 2016) produced 

a preliminary reference genome for the species, identified more than 50% of sequences, and generated 

both SNP variant and INDEL predictions as a resource for future phylogenetic and population studies. 
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The genome of this species shows evidence of a rapid evolutionary rate – consistent with other 

Urochordata (Denoeud et al. 2010; Tsagkogeorga et al. 2012). An initial survey of small RNAs revealed 

the presence of known, conserved miRNAs, novel miRNA genes, and unique piRNA for various 

developmental stages (Jue et al. 2016), suggesting possible genomic bases of the successful adaptation of 

the species to the changing climate of the Southern Ocean.  

19.5. Present-day challenges and future opportunities 

19.5.1. Additional genomic resources for marine zooplankton species 

Pelagic zones represent one of the largest (by volume) habitats on Earth, with highly diverse and 

ecologically important assemblages of zooplankton, which can serve as early warning indicators of 

climate change. Genomic resources are needed to facilitate both intra- and interspecies comparative 

studies of genetic diversity and structure, phylogeography, demographic history, and adaptive evolution. 

Importantly, marine zooplankton provide a diverse and useful assemblage to move forward novel studies 

of the genomic basis of adaptation and evolutionary divergence. Yet the exceptional phylogenetic 

diversity of marine zooplankton exacerbates the challenges of ensuring that reference genomes are 

available for abundant and ecologically-important species or their close relatives.  

Whole-genome sequencing initiatives should cover a wide range of genome sizes to uncover 

trends in genome evolution and new elements of genome organization. For instance, sequencing of the 

salp genome revealed novel miRNA genes and unique piRNAs (Jue et al. 2016), while the genome of 

Pacific sea gooseberry, Pleurobrachia bachei, is apparently lacking the canonical miRNA machinery and 

HOX genes (Moroz et al. 2014).  

Stimulating discoveries are anticipated from sequencing the exceptionally large genomes of many 

crustaceans, including euphausiids, copepods, and amphipods, which may reveal novel regulation of 

repetitive elements, functional divergence of gene duplication and concomitant novel functions of various 

gene copies, and correlation between genome size and DNA methylation levels in metazoans (e.g., 

Lechner et al. 2013). From a practical perspective, even low-coverage genomes will increase the 
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robustness of population genomic approaches by facilitating a diverse range of methods, including in-

silico digestion of genome sequences for RAD-seq techniques, higher mapping rates for DNA and RNA-

derived sequences, and the development of baits for sequence capture experiments.  

Despite their ecological importance in pelagic food webs and their phylogenetic diversity, marine 

zooplankton have been – and continue to be – largely ignored in the prioritization of species for genomic 

and transcriptomic analysis. For example, a list of top priority species for reference genome determination 

from Voolstra et al. (2017) includes only one marine zooplankton species, the mid-water shrimp, 

Acanthephyra purpurea. 

19.5.2. Sampling zooplankton in the global ocean  

Sampling zooplankton accurately and effectively is a challenge due both to the nature of the 

pelagic habitat and the frequently immense population sizes of the organisms compared to sampling 

capacity. It is essential to keep in mind that planktonic organisms most usually occur in patchy 

distributions, and that some of them are able to avoid the sampling equipment. The origin of these 

planktonic assemblages or patches has been discussed over many years (e.g., Levin and Segel 1976) and 

some experimental studies have shown species-specific patterns (Omori and Hamner 1982). Avoidance 

behaviors also vary among species, and a number of studies have shown that net size and design can 

markedly impact avoidance and improve the accuracy of sampling of dense and diverse assemblages 

(Wiebe 1968; Skjoldal et al. 2013; Wiebe et al. 2013). Novel instrumentation designs are now allowing 

pairing of net sampling with optical and acoustical technologies to allow adaptive sampling of target 

species of particular interest and importance.  

19.5.3. Species identification 

Accurate and precise identification of species is critical for any study, yet for most zooplankton 

groups this goal is challenging – at best. Morphological identification has been shown to be unreliable for 

numerous species, including sibling species of the copepods Pseudocalanus (Bailey et al. 2015) and 

Calanus (Choquet et al. 2017b). Both transcriptomic and genomic resources are invaluable in allowing 
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the design of rapid and inexpensive protocols for accurate discrimination and identification of sibling and 

cryptic species of marine zooplankton (e.g., Smolina et al. 2015).  

19.5.4. Genomic analysis of small-sized organisms  

Zooplankton species are often very small and thus the yield of DNA extractions is limited. This is 

not an issue for current HTS methods, which usually require a very small amount of DNA (10s ng). The 

ongoing development of new sequencing platforms and technologies will likely allow longer sequencing 

reads and thus better genome and transcriptome assemblies. There is a continuing need to ensure that 

even the tiniest organisms will be amenable to any new developments in sequencing technologies and 

instrumentation. 

19.5.5. Genomic basis of adaptation 

Marine environments are experiencing rapid changes in critically-important processes and 

parameters, including temperature, light penetration, nutrient availability and ocean acidification, among 

many others. The resultant changes in species physiological condition, ecological functioning, and 

biogeographical distribution and abundance will inexorably alter pelagic ecosystems in trajectories that 

are difficult to predict. How species may acclimate and/or adapt to environmental change, and how their 

interactions within the pelagic food web may be altered, can be examined at many levels. A powerful and 

important approach lies in examining the underlying genomic mechanisms that facilitate successful 

adaptation to changing environmental conditions. Although any given species may be uniquely impacted 

by the physical and biological parameters accompanying shifts in global climate profiles, processes 

involved in responses to climate change at the molecular level may share common features across species, 

such as the evolution of gene networks associated with environmental stress responses. Genomic 

resources are proving instrumental in garnering new insights into organism – environment interactions, 

including responses to environmental variability associated with climate change. However, we still lack a 

fundamental understanding of genomic features that afford plasticity and facilitate adaptive responses. 

These challenges can only be met with comprehensive genomic and transcriptomic resources that will 
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afford comparative analysis to investigate the mechanisms underlying the responses of marine 

zooplankton to the changing environmental conditions throughout the global ocean.  
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19.7. Table Legends and Tables  

Table 1. Holozooplankton species for which genome assemblies and accompanying statistics are publicly available (as of June 2017). Estimated 

genome sizes are based on assembly statistics unless otherwise noted. 

Tunicates Ctenophores Copepods

Oikopleura 

dioica

Oikopleura 

dioica

Salpa 

thompsoni

Pleurobrachia 

bachei

 Mnemiopsis 

leidyi

Eurytemora 

affinis

Oithona nana Tigriopus 

kingsejongensi

Tigriopus 

californicus

Main assem  Allelic assem

Assembly Name ASM20953v1 ASM20955v1 Salp Genome 

1.0

P.bachei_draft_

genome_v.1.1

GCA_0002260

15.1

Eaff_1.0 O. nana v.1.0 NA TCALIF_v1.0

Estimated Genome Size (MB) 68.46 allelic assembly 602a 170 150 616.14b 85 298 245d

Assembly Size 70,471,451 45,141,193 318,747,957 156,121,975 155,865,547 494,890,867 85,010,107 305,712,242 184,634,130

Predicted protein coding Genes 18,020 18,020 13,186 19,523 16,548 29,783 15,359 12,772 14,536

Coverage 14X N/Ac 20X 200X  160X 75X N/Ac 65X N/Ac

Number of scaffolds 1,260 4,196 478,281 21,979 5,100 6,899 4,626 27,823 2,365

Length of N50 scaffold (bp) 395,387 21,890 934 20,628 187,314 862,645 400,614 159,218 298,012

Number of N50 scaffold (L50) 35 478 79,492 1,646 242 163 60 N/Ac 180

Number of contigs 5,917 6,678 590,021 38,864 24,884 122,625 7,437 48,368 26,175

Length of N50 contig (bp) 24,932 10,847 636 6,132 11,936 5,738 38,620 17,566 14,799

Number of N50 contig 718 985 136,534 6,078 3,653 19,338 463 N/Ac 3,352

Length of gaps (bp) 3,938,358 2,655,217 14,945,692 19,276,734 5,525,119 107,316,113 2,943,785 10,474,460 N/Ac

References Denoeud et al. 

(2010)

Denoeud et al. 

(2010)

Jue et al. 

(2016)

Moroz et al. 

(2014)

 Ryan et al. 

(2013)

Eyun et al. 

(2017)

Madoui et al. 

(2017)

Kang et al. (2017) https://i5k.nal.usda.

gov/Tigriopus_califo

rnicus

a
 genome size estimate independent of assembly (Jue et al. 2016)

b
 genome size estimate independent of assembly (Rasch et al. 2004)

c
 not available/not provided 

d
 genome size estimate independent of assembly (Wyngaard and Rasch 2000)  
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Table 2: Mitochondrial genomes available for marine zooplankton species, with corresponding lengths.  

Taxon and Species Citation  Length (bp)

Copepoda

Calanus hyperboreus Kim et al. (2013) 17,910

Calanus sinicus Minxiao et al. (2011) >20,460

Paracyclopina nana Ki et al. (2009) 15,981

Tigriopus californicus Burton et al. (2007) 14,600

Tigriopus japonicus Machida et al. (2002) 14,628

Tigriopus sp. Jung et al. (2006) 14,301

Euphausiacea

Euphausia pacifica Shen et al. (2011) 16,898

Euphausia superba Shen et al. (2010) >15,498

Ostracoda

Vargula hilgendorfii Ogoh & Ohmiya (2004) 15,923

Amphipoda

Onisimus nanseni Ki et al. (2010) 14,734

Decapoda

Acetes chinensis Kim et al. (2012) 15,740

Cnidaria

Aurelia aurita Shao et al. (2006) 16,937

Cassiopea frondosa Kayal et al. (2011) 15,949

Chrysaora quinquecirrha Hwang et al. (2014) 16,775

Ctenophora

Mnemiopsis leidyi Pett et al. (2011) 10,000

Pleurobrachia bachei Kohn et al. (2012) 11,016

Chaetognatha

Sagitta decipiens Miyamoto et al. (2010) 11,121

Sagitta enflata Miyamoto et al. (2010) 12,631

Sagitta ferox Li et al. (2016) 12,153

Sagitta nagae Miyamoto et al. (2010) 11,459

Paraspadella gotoi Helfenbein et al. (2004) 11,423

Pterosagitta draco Wei et al. (2016) 10,426

Spadella cephaloptera Papillon et al. (2004) 11,905  
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Table 3. Summary of transcriptomic resources for marine zooplankton species. Transcript and gene numbers are indicated as presented in the 

original study. Note that different methodologies were employed across these datasets (e.g. Trinity, MIRA_Newbler, Evigene, FPKM filtered, etc) 

that render cross-comparisons of gene and transcript numbers among species equivocal. 
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Phylum and Species BioProject

Contig 

Total

Contig Max 

Length

Contigs Total 

Length

Contigs 

Annotated Transcripts N50 Genes Citation

Cnidaria

Alatina alata PRJNA312373 31,737 32,591 48,508,802 No 31,776 2,545 20,173 Ames et al. (2016)

Rhopilema esculentum PRJNA318143 148,857 30,742 121,470,903 No NA NA NA Chongbo and Yunfeng (Dir Sub)

Aurelia aurita PRJNA252562 252,170 46,960 180,188,094 No 24,264 1,761 10,285 Brekham et al. (2015)

Ctenophora

Mnemiopsis leidyi PRJNA344880 140,842 29,348 137,638,938 No NA NA NA Sanchez Alvarado, Gotting and Ross (Dir Sub)

Arthropoda: Copepoda

Acartia fossae 100,383 8,174 No 769 Eyun et al. (2017)

Calanus finmarchicus PRJNA236983 28,954 2,945 10,223,122 No 251,042 354 13,057 Smolina et al. (2014)

Calanus finmarchicus PRJNA236528 206,012 23,068 205,455,659 Yes  1,418  Lenz et al. (2014)

Calanus finmarchicus PRJNA231164 241,140 25,048 160,760,719 No    Tarrant et al. (2014)

Calanus glacialis PRJNA237014 36,880 4,021 15,748,490 No 242,602 471 18,387 Smolina et al. (2014)

Calanus glacialis PRJNA274584 54,344 7,507 33,214,362 No 16,998 620 16,998 Ramos et al. (2015)

Calanus sinicus 69,751 69,751 1,127 43,417 Yang et al. (2014)

Calanus sinicus 3,923 No 29,458 513 Eyun et al. (2017)

Eucyclops serrulatus PRJNA231234 51,528 16,342 36,645,141 No Cattonaro (Dir Sub)

Eurytemora affinis PRJNA278152 107,445 26,685 142,143,154 No 29,783 Monroe (Dir Sub)

Eurytemora affinis PRJNA242763 138,088 23,627 143,733,589 Yes Almada and Tarrant (Dir Sub)

Eurytemora affinis 88,104 26,685 Eyun et al. (2017)

Paracyclopina nana PRJNA268783 60,687 27,858 95,849,484 Yes 67,179 4,178 12,474 Lee et al. (2015)

Pseudocalanus acuspes PRJNA296544 207,302 12,713 59,236,626 Yes 69,555 1,348 28,879 De Wit et al. (2016)

Tigriopus kingsejongensis PRJNA283925 38,250 7,809 36,497,199 Yes Lee (Dir Sub)

Tigriopus kingsejongensis 23,942 28,850,726 40,172 1,093 12,772 Kang et al. (2017)

Tigriopus californicus PRJNA263967 12,067 13,452 14,966,851 No Barreto et al. (2011)

Tigriopus californicus PRJNA263967 12,075 13,452 14,902,878 No Barreto et al. (2011)

Tigriopus californicus 106,317 27,644  NA Yes 106,317 2,837 12,573 Periera et al. (2016)

Tigriopus californicus 60,840 8,614 1,510 Eyun et al. (2017)

Tigriopus japonicus PRJNA274317 54,758 23,769 82,981,758 Yes  3,565  Kim et al. (2015)

Arthropoda: Euphausiacea

Euphausia superba 11,127 Yes 15,347 520 7,942 Meyer et al. (2015)

Euphausia superba 22,177 8,515 Yes 5,563 Clark et al. (2011)

Euphausia superba 133,962 129,183,922 Yes 1,294 27,928 Sales et al (2017)

Euphasia crystallorophias 42,632 8,341 Toullec et al. (2013) 

Meganyctiphanes norvegica PRJNA324094 405,497 26,644 222,530,071 No NA NA NA Maas and Blanco Bercial (Dir Sub)

Arthropoda: Amphipoda

Talitrus saltator PRJNA297565 156,706 22,032 151,674,147 Yes 968 O'Grady et al. (2016)

Arthropoda: Mysidacea

Neomysis awatschensis PRJNA287057 22,141 10,398 14,999,154 Yes 22,141 801 Kim et al. (2016)

Mollusca: Pteropoda

Clio pyramidata PRJNA231010 45,735 45,735 852 30,800 Maas et al. (2015)

Clione limacina PRJNA314884 477,401 30,190 258,267,445 Yes 300,994 816 181,879 Thabet et al. (2017)

Limacina antarctica PRJNA295792 81,226 7,935 59791880 No 402,273 500 81,229 Johnson and Hoffman (2016)

Limacina helicina PRJNA386290 53,121 12,358 31,790,000 Yes 796 Koh et al. (2015)

Urochordata: Tunicata

Oikopleura dioica PRJNA269316 54,949 23,096 66,526,340 No Wang et al. (2015)

Oikopleura dioica PRJNA269317 86,898 70,800,000 57,962 1,806 16,423 Wang et al. (2015)

Salpa thompsoni PRJNA279245 217,849 30,785 151,741,986 No 216,931 1,163 26,413 Jue et al. (2016); Batta Lona et al. (2017)
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19.8. Figure Legends 

Figure 1. Distribution of estimated genome sizes in representative holozooplankton phyla. Black dots 

indicate sequenced genomes. Genome size estimations are from Gregory (2017), Jeffery et al. 

(2017), Leinaas et al. (2016), Ryan et al. (2014), Moroz et al. (2014), and Madoui et al. (2017).  

 

 

  



Population Genomics of Marine Zooplankton – Bucklin et al. – August 22, 2017   Page 31 

 
 

Figure 2: Comparison of the mitochondrial gene order between Calanus sinicus and C. hyperboreus. 

Only the 13 protein-coding genes are represented. Rectilinear shapes show genes for which the 

order is conserved between the two species; red lines indicate genes with the same sequence but 

in reverse order between the species. 
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Figure 3. Calanus finmarchicus (Copepod) http://umaine.edu/jrunge/files/2013/12/CV_1_for-

publication.jpg (Photo J.R. Runge, University of Maine) 

  

  

http://umaine.edu/jrunge/files/2013/12/CV_1_for-publication.jpg
http://umaine.edu/jrunge/files/2013/12/CV_1_for-publication.jpg
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Figure 4. Circulation patterns and bathymetry of the North Atlantic Ocean basin, providing the 

foundation of the three-gyre hypothesis for basin-scale dispersal of the copepod Calanus 

finmarchicus. Figure from Wiebe et al. (2009). 
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Figure 5. Centropages typicus (Copepod) https://alchetron.com/Centropages-2143715-W (Photo 

Slotwinski, University of Tasmania)  

 

 

  

https://alchetron.com/Centropages-2143715-W
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Figure 6. Hypothesized models of gene flow and population connectivity of the copepod Centropages 

typicus. The full migration model (lower right in diagram) showed the highest likelihood among 

the considered models based on Bayesian analysis. Figure from Blanco-Bercial and Bucklin 

(2016). 
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Figure 7. Euphausia superba (Euphausiid) http://www.ecoscope.com/krill/krill4/index.htm (Photo Uwe 

Kils, Rutgers University, USA) 

 

  

http://www.ecoscope.com/krill/krill4/index.htm
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Figure 8. Meganyctiphanes norvegica (Euphausiid) 

https://en.wikipedia.org/wiki/Northern_krill#/media/File:Meganyctiphanes_norvegica.jpg  (Photo 

Uwe Kils, Rutgers University, USA) 

 

  

https://en.wikipedia.org/wiki/Northern_krill#/media/File:Meganyctiphanes_norvegica.jpg
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Figure 9. Pleurobrachia bachei (Ctenophora) http://jellieszone.com/ctenophores/pleurobrachia/  (Photo 

Dave Wrobel) 

 

 

 

  

http://jellieszone.com/ctenophores/pleurobrachia/
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Figure 10. Spadella cephaloptera (Chaetognatha) http://australianmuseum.net.au/image/Arrow-worm-

Chaetognaths (Photo Peter Parks, Image Quest 3-D) 

 

 

  

http://australianmuseum.net.au/image/Arrow-worm-Chaetognaths
http://australianmuseum.net.au/image/Arrow-worm-Chaetognaths
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Figure 11. Salpa thompsoni (Tunicata, Thaliacea) 

http://www.whoi.edu/cms/images/oceanus/2005/6/v44n1-briefs2-3en_10823.jpg (Photo L.P. 

Madin, Woods Hole Oceanographic Institution) 
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